

Journal of Molecular Catalysis A: Chemical 105 (1996) 131-136



# <sup>1</sup>H and <sup>17</sup>O NMR spectroscopic detection and characterization of titanium(IV) alkylperoxo complex

E.P. Talsi<sup>a,\*</sup>, K.V. Shalyaev<sup>b</sup>

<sup>a</sup> Boreskov Institute of Catalysis, Prospekt Academika Lavrentieva 5, Novosibirsk 630090, Russia
<sup>b</sup> Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia

Received 19 May 1995; accepted 25 August 1995

#### Abstract

Using <sup>1</sup>H and <sup>17</sup>O NMR spectroscopy it was shown that in the initial stage of the reaction of  $TiO(acac)_2$  (Hacac = acetylacetone) with an excess of Me<sub>3</sub>COOH in benzene an alkylperoxo complex Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH is formed. The mode of generation of this alkylperoxo complex (via addition of Me<sub>3</sub>COOH to Ti=O bond) differs from that previously observed for alkylperoxo complexes of vanadium(IV) and molybdenum(VI) (via oxidative addition or ligand substitution, respectively). Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH is probably octahedral with acetylacetonato ligands occupying equatorial positions.

Keywords: Alkylperoxo complexes; Titanium; Epoxidation; Mechanisms

### 1. Introduction

It is widely agreed that transition metal alkylperoxo complexes MOOR (where M = Mo, V, Ti) are active species in the selective epoxidation of alkenes with organic hydroperoxides [1–5]. However, in the case of titanium(IV) very little information is available about the reaction mechanism. Titanium(IV) alkylperoxo complexes have never been synthesized or detected spectroscopically. At the same time Ti(IV) + ROOH catalytic systems are of great practical importance. To mention just two of them: Ti(IV) supported on SiO<sub>2</sub> is a unique catalyst in selective epoxidation of propylene by organic hydroperoxides [1], and the catalytic system titanium(IV) tetraisopropoxide, tert-butyl hydroperoxide, and (+) or (-)-diethyl tartrate has shown its potential for the asymmetric epoxidation of allylic alcohols [2].

Recently, the reaction of Ti(OtBu)<sub>4</sub> with enriched in <sup>17</sup>O cumene hydroperoxide was investigated with <sup>17</sup>O NMR spectroscopy [3]. Addition of 1 equiv. of the hydroperoxide to  $Ti(OtBu)_4$ shows little free hydroperoxide (resonances at 258 (800 Hz) and 216 ppm (600 Hz)) in solution and a single peak at 284 ppm (1 kHz) alkylperoxide product the assigned to  $[Ti(OtBu)_3(OOCMe_2Ph)]_n$  [3]. However, further studies are needed to support this assignment. It is unclear, why the resonance at 284 ppm is of practically the same width as those of free cumene hydroperoxide. The widths of the resonances of quadrupole nuclei dramatically increases with the growth of the size of molecule [4]. From the experimental data available it is difficult to

<sup>\*</sup> Corresponding author. Tel: (+7-383)2355750. Fax: (+7-383)2355766, E-mail: TALSI@CATALYSIS.NSK.SU.

<sup>1381-1169/96/\$15.00 © 1996</sup> Elsevier Science B.V. All rights reserved *SSDI* 1381-1169(95)00243-X

exclude that the resonance at 284 ppm belongs to OtBu groups but not to the OOCMe<sub>2</sub>Ph moiety (natural abundance Ti(OtBu)<sub>4</sub> exhibits resonance at 303 ppm (300 Hz) [3]).

In our previous works we have observed and characterized spectroscopically alkylperoxo complexes formed in reactions of VO(acac)<sub>2</sub> and  $MoO_2(acac)_2$  with Me<sub>3</sub>COOH in benzene [6,7]. In this work we have detected with <sup>1</sup>H and <sup>17</sup>O NMR the titanium(IV) alkylperoxo complex formed in the initial step of reaction of TiO(acac)<sub>2</sub> with Me<sub>3</sub>COOH.

It was interesting to compare the mode of generation of titanium(IV) alkylperoxo complexes and that of vanadium(V) and molybdenum(VI). Note that the catalytic system  $TiO(acac)_2 + Me_3COOH$  can epoxidize cyclohexene [8].

#### 2. Experimental

Benzene- $d_6$  was dried over sodium metal. TiO(acac)<sub>2</sub> and tert-butyl hydroperoxide were synthesized as described in ref. [9] and [10,11], respectively. Purchased cyclohexene was purified by double fractional distillation just before using. Reactions were carried out directly in standard NMR tubes at 293 K by addition of Me<sub>3</sub>COOH to solutions of TiO(acac)<sub>2</sub>.

<sup>1</sup>H and <sup>17</sup>O NMR spectra were recorded at 400.13 and 54.043 MHz, respectively, using the pulsed FT NMR technique on a Bruker MSL 400 MHz spectrometer. The field homogeneity was adjusted by shimming on the <sup>2</sup>H resonance of deuterated solvents. A high-power probe head was used for <sup>17</sup>O NMR measurements to increase sensitivity.

The following operating conditions were used for <sup>17</sup>O NMR measurements: sweep width 80 000 Hz, spectrum accumulation frequency 100 Hz, number of scans 30 000–200 000, 90° radio frequency pulse at 13  $\mu$ s. The data were accumulated with 2K data points in the time domain and were transformed with optimal exponential multiplication 20–50 Hz. Chemical shifts were calculated in ppm with positive values in the low-field direction with respect to the reference: TMS for <sup>1</sup>H and  $H_2O$  for <sup>17</sup>O. The error in measuring the <sup>17</sup>O chemical shift values was  $\pm 1$  ppm for the line widths below 500 Hz, and that for measuring a line width was  $\pm 20$  Hz for the line widths between 100 and 400 Hz.

The EPR spectra were recorded using a Bruker ER 200 D spectrometer. The concentration of Me<sub>3</sub>COO<sup>•</sup> free radicals was measured by comparing the second integrals of the EPR spectra of the sample and a 0.1 mg crystal of  $CuCl_2 \cdot 2H_2O$  as reference.

### 3. Results and discussion

3.1. The structure of  $TiO(acac)_2$  in benzene and chloroform

According to molecular weight determination,  $TiO(acac)_2$  exists in benzene mainly in the form of dimers  $[TiO(acac)_2]_2$  [9].

The <sup>1</sup>H NMR spectrum of a 0.20 M solution of TiO(acac)<sub>2</sub> in C<sub>6</sub>D<sub>6</sub> includes at least two types of titanium(IV) complexes (Fig. 1a). Two narrow signals with relative intensities 1:6, denoted by



Fig. 1. <sup>1</sup>H NMR spectrum of 0.20 M TiO(acac)<sub>2</sub>: (a) in  $C_6D_6$ ; (b) in CDCl<sub>3</sub>. The lines marked by crosses correspond to free acetylacetone (enol).

the letter M, most probably belong to acetylacetonato ligands of monomeric complex  $TiO(acac)_2$ , three broad lines with relative intensities 1:3:3 (D) are assigned to that of the dimeric complex  $[TiO(acac)_2]_2$ . The lines marked by crosses correspond to free acetylacetone (enol) (see Fig. 1a and Table 1).



In agreement with molecular weight determination,  $[TiO(acac)_2]_2$  prevails in C<sub>6</sub>D<sub>6</sub>. The ratio [dimer]/[monomer] calculated from the spectrum of Fig. 1a is 4. Nonequivalence of CH<sub>3</sub> groups of acetylacetonato ligands of complex D (Fig. 1a) supports its attribution to [TiO(acac)\_2]\_2.

The <sup>17</sup>O NMR spectrum of the same sample is presented in Fig. 2a. The broad line at 350 ppm was assigned to the oxygen atoms of acetylace-tonato ligands of  $[TiO(acac)_2]_2$ . The correspond-



Fig. 2. <sup>17</sup>O NMR spectrum of 0.20 M TiO(acac)<sub>2</sub>: (a) in C<sub>6</sub>D<sub>6</sub>; (b) in CDCl<sub>3</sub>; (c) 15 min after onset of reaction of TiO(acac)<sub>2</sub> with Me<sub>3</sub>COOH in C<sub>6</sub>D<sub>6</sub> ([Me<sub>3</sub>COOH] = 3.0 M). Number of scans = 100 000.

ing line of the monomer TiO(acac)<sub>2</sub> is masked by this line. The line at 796 ppm (marked by D) was attributed to Ti-O-Ti oxygen atoms of

Table 1

<sup>17</sup>O and <sup>1</sup>H NMR chemical shifts  $\delta$  and line widths  $\Delta v_{1/2}$  of titanium(IV) complexes in C<sub>6</sub>D<sub>6</sub> and CDCl<sub>3</sub>

| Complex                                       | Solvent                                            | $\delta/\text{ppm} \left( \Delta v_{1/2}/\text{Hz} \right)$ |                        |                                           |                    |                                 |                                   |               |
|-----------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------|-------------------------------------------|--------------------|---------------------------------|-----------------------------------|---------------|
|                                               |                                                    | <sup>17</sup> 0                                             |                        |                                           | 'H                 |                                 |                                   |               |
|                                               |                                                    | Ti-O-Ti                                                     | Ti=0                   | acac                                      | CH <sup>acac</sup> | CH <sub>3</sub> <sup>acac</sup> | CH <sub>3</sub> <sup>OOCMex</sup> | СН3ОСМез      |
| TiO(acac) <sub>2</sub>                        | C <sub>6</sub> D <sub>6</sub><br>CDCl <sub>3</sub> |                                                             | 917 (200)<br>903 (360) | -<br>346 (1560)                           | 5.28<br>5.64       | 1.73<br>2.01                    | -                                 | -             |
| $[\text{TiO}(\text{acac})_2]_2$               | $C_6D_6$                                           | 796 (280)                                                   | -                      | 350 (2300)                                | 5.22               | 1.96<br>1.53                    | -                                 | _             |
| Ti(acac) <sub>2</sub> (OOCMe <sub>3</sub> )OH | C <sub>6</sub> D <sub>6</sub><br>CDCl <sub>3</sub> | -                                                           | -                      | 360 (1000)<br>-                           | 5.30<br>5.87       | 1.67<br>2.11                    | 1.29                              | -             |
| $Ti(acac)_2(OCMe_3)_2$                        | C <sub>6</sub> D <sub>6</sub>                      | -                                                           |                        | 388 ° (730)<br>358 ° (730)<br>325 ° (810) | 5.26<br>-<br>-     | 1.78<br>1.86<br>-               | -                                 | 1.54<br><br>- |

<sup>a</sup> It is difficult to distinguish the resonances of acac ligands from those of OCMe<sub>3</sub> ligands.

 $[TiO(acac)_2]_2$  and the line at 917 ppm (marked by M) to Ti=O group of TiO(acac)\_2 (see Fig. 2a and Table 1).

The ratio [dimer]/[monomer] dramatically changes when  $C_6D_6$  is replaced by CDCl<sub>3</sub>. Narrow resonances of the monomeric complex TiO(acac)<sub>2</sub> prevail in <sup>1</sup>H (Fig. 1b) and <sup>17</sup>O (Fig. 2b) spectra of the 0.2 M TiO(acac)<sub>2</sub> solution in CDCl<sub>3</sub>.

Thus,  $TiO(acac)_2$  exists in  $C_6D_6$  mainly as the dimer  $[TiO(acac)_2]_2$ , whereas in CDCl<sub>3</sub> it is present as the monomer  $TiO(acac)_2$ .

# 3.2. Characterization of titanium(IV) alkylperoxo complex Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH

It would be natural to study the reaction of TiO(acac)<sub>2</sub> with Me<sub>3</sub>COOH in CDCl<sub>3</sub>, since more simple monomeric species predominate in this solvent. However, in CDCl<sub>3</sub> the <sup>1</sup>H NMR signal of the Me<sub>3</sub>COO of group  $Ti(acac)_2(OOCMe_3)OH$  is masked by the intense signal of Me<sub>3</sub>COOH. Hence the experiments were mainly made in  $C_6D_6$  with a 15-fold excess of Me<sub>3</sub>COOH to TiO(acac)<sub>2</sub>. In this case the <sup>1</sup>H NMR spectrum of alkylperoxo complex was clearly observed.

The <sup>1</sup>H NMR spectra recorded at various lengths of time after onset of the reaction between  $TiO(acac)_2$  and  $Me_3COOH$  in  $C_6D_6$  show that at the initial stage resonances with relative intensities 2:12:9 (marked by points) appear and then gradually diminish (Fig. 3 and Table 1). Resonances 2:12 are in the region typical for CH and CH<sub>3</sub>-protons of acetylacetonato ligands. The chemical shift of the resonance with relative intensity 9 (1.29 ppm) is very close to that observed for Me<sub>3</sub>COO group of VO(acac)<sub>2</sub>(OOCMe<sub>3</sub>) (1.28 ppm) [6]. It is natural to suppose that the characteristic pattern 2:12:9 belongs to a titanium(IV) complex with a formal monomeric Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH or dimeric  $[Ti(acac)_2(OOCMe_3)]_2O$ structure. For the other possible structures, e.g.  $TiO(acac)(OOCMe_3)$ and



Fig. 3. <sup>1</sup>H NMR spectrum of 0.20 M TiO(acac)<sub>2</sub> in C<sub>6</sub>D<sub>6</sub> after various lengths of time after onset of reaction with Me<sub>3</sub>COOH ([Me-COOH] = 3.0 M): (a) 5 min, (b) 15 min, (c) 30 min. Lines marked by asterisks were not reliably identified.

 $Ti(acac)_2(OOCMe_3)_2$ , the ratio of integral intensities of the lines would be 1:6:9.

In the course of the reaction studied, Me<sub>3</sub>COOH decomposes to give Me<sub>3</sub>COH, whereas acetyl-acetone oxidizes into acetic acid.

The lines marked in the Fig. 3a by asterisks were not reliably identified. The first three lines from the left closely resemble those for  $Ti(acac)_2(OCMe_3)_2$  (see below), the other ones most probably belong to the unidentified products of the oxidation of the acetylacetone ligands.

On passing from  $C_6D_6$  to  $CDCl_3$  as a solvent, the picture was practically the same as in Fig. 3, but the line of the Me<sub>3</sub>COO group of Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH was masked by the intense signal of Me<sub>3</sub>COOH.

<sup>17</sup>O NMR data provide evidence in favor of the absence of Ti=O or Ti-O-Ti groups in the alkylperoxo complex found. The <sup>17</sup>O NMR spectrum of the same sample as in Fig. 3b contains no signals in the region typical for Ti-O-Ti or Ti=O oxygen atoms (see Fig. 2c). Thus, the monomeric structure  $Ti(acac)_2(OOCMe)_3OH$  fits the experimental data better than the dimeric one  $[Ti(acac)_2OOCMe_3]_2O$ . The line near 360 ppm (Fig. 2c) is ascribed to oxygen atoms of acetylacetonato ligands of  $Ti(acac)_2(OOCMe_3)OH$ . The nature of the signal at 73 ppm is still unclear.

The characteristic pattern 2:12:9 in the <sup>1</sup>H NMR spectrum belongs to Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH, but not to  $Ti(acac)_2(OCMe_3)OH$ . This deduction firstly, is based, on the fact that Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH decomposes with time in  $C_6D_6$ . The rate of this decomposition increases (ca. twofold), if cyclohexene had been previously added to  $C_6D_6$  ([ $C_6D_{10}$ ] = 2 M). The decomposition of Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH in  $C_6D_6/$  $C_6H_{10}$  mixture was accompanied by the growth of the resonances of cyclohexene oxide in the <sup>1</sup>H NMR spectra. Thus, the titanium(IV) complex found, reacts with cyclohexene. Secondly, Me<sub>3</sub>COO' free radicals ([Me<sub>3</sub>COO']  $\approx 10^{-5}$  M) were observed in the reaction solution studied. Their concentration changed in a correlated manner with the concentration of  $Ti(acac)_2(OOCMe_3)OH$ . Such an effect was previously observed for alkylperoxo complexes of V, Mo and Co [6,7,12]. Thirdly, we have prepared the complex  $Ti(acac)_2(OCMe_3)_2$  in situ by heating TiO(acac)<sub>2</sub> for 10 min at 80°C in a  $C_6D_6/$  $Me_3COH = 1:1$  mixture ([TiO(acac)\_2] = 0.20 M). Ti(acac)<sub>2</sub>(OCMe<sub>3</sub>)<sub>2</sub> exhibits in the <sup>1</sup>H NMR spectrum four lines with relative intensities 1:3:3:9 of two acetylacetonato ligands (1:3:3) and two Me<sub>3</sub>CO groups (9) (Fig. 4a and Table 1). The <sup>17</sup>O NMR spectrum of Ti(acac)<sub>2</sub>(OCMe<sub>3</sub>)<sub>2</sub> contains three lines of equal intensity, which belong to nonequivalent oxygen atoms of acetylacetonato ligands and of Me<sub>3</sub>CO groups (Fig. 4b and Table 1). The <sup>1</sup>H chemical shift of the Me<sub>3</sub>CO group of  $Ti(acac)_2(OCMe_3)_2$  (1.55) ppm) differs noticeably from that of the Me<sub>3</sub>COO group of Ti(acac)<sub>2</sub>(OOCMe<sub>3</sub>)OH (1.28 ppm).

Thus, in the initial stage of the reaction of  $Me_3COOH$  with  $TiO(acac)_2$  in benzene an alkylperoxo complex  $Ti(acac)_2(OOCMe_3)OH$ , active towards cyclohexene, is formed.



Fig. 4. <sup>1</sup>H (A) and <sup>17</sup>O (B) NMR spectra of 0.2 M  $Ti(acac)_2(OCMe_3)_2$  obtained upon heating of  $TiO(acac)_2$  at 80°C for 10 min in C<sub>6</sub>D<sub>6</sub>/Me<sub>3</sub>COH=1:1 volume mixture. Spectra were recorded at 20°C. The lines of  $Ti(acac)_2(OCMe_3)_2$  are marked by points.

Let us consider the possible structure of  $Ti(acac)_2(OOCMe_3)OH$  in  $C_6D_6$ . According to the <sup>1</sup>H NMR data, the CH<sub>3</sub> groups of its acetyl-acetonato ligands are equivalent, in contrast to  $Ti(acac)_2(OCMe_3)_2$ . Such equivalence may arise if acetylacetonato ligands occupy the equatorial positions of the octahedral complex. The proposed structures of  $Ti(acac)_2(OCMe_3)_2$  in benzene are presented below.

$$\begin{array}{c} OOR \\ \downarrow O \\ \downarrow O \\ \downarrow O \\ OH \end{array}$$

The mode of generation of  $Ti(acac)_2(OOCMe_3)OH$  differs from those pre-

viously reported for vanadium(V) and molybdenum(VI) alkylperoxo complexes.  $VO(acac)_2$ reacts with Me<sub>3</sub>COOH to give  $VO(acac)_2(OOCMe_3)$  via oxidative addition [5]. MoO<sub>2</sub>(acac)<sub>2</sub> gives MoO<sub>2</sub>(OOCMe<sub>3</sub>)<sub>2</sub> via ligand substitution [7]. TiO(acac)<sub>2</sub> interacts with Me<sub>3</sub>COOH via addition to the Ti=O or Ti-O-Ti bond.

The formation of the titanium(IV) alkylperoxo complex via addition to the Ti=O bond was recently proposed, but has not been spectroscopically confirmed [1]. Note that the suggested structure of the active site of the above mentioned Ti(IV)/SiO<sub>2</sub> supported catalyst includes a Ti=O group [1].

It is obvious that  $Ti(acac)_2(OOCMe_3)OH$  is not the key intermediate of selective epoxidation cyclohexene by the catalytic system of  $TiO(acac)_2 + Me_3COOH$ , since it exists only at the early stage of the reaction and then irreversibly decomposes (acetylacetonato ligands oxidize into acetic acid). We still have not identified the titanium(IV) alkylperoxo species which drive the catalytic cycle of cyclohexene epoxidation. This was done earlier for vanadium [6] and molybdenum [1,7] complexes as catalysts. However, by analogy we can suppose that titanium(IV) complexes containing 1,2-diolo ligands and a Me<sub>3</sub>COO group are the active species of cyclohexene epoxidation in the steady-state conditions.

## 4. Conclusions

An alkylperoxo complex  $Ti(acac)_2$ (OOCMe<sub>3</sub>)OH, active towards cyclohexene, is formed in the initial stage of the reaction of  $TiO(acac)_2$  with Me<sub>3</sub>COOH. The mode of generation of  $Ti(acac)_2(OOCMe_3)OH$  (via addition to Ti=O bond) differs from that of vanadium and molybdenum alkylperoxo complex recently studied. The alkylperoxo complex observed is probably octahedral in structure with acetylacetonato ligands occupying equatorial positions.

### Acknowledgements

This work was supported by the Russian Fund of Basic Research, grant 93-03-4758 and grant INTAS-94-1515.

#### References

- R.A. Sheldon and J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
- [2] K.B. Sharpless, S.S. Woodard and M.G. Finn, Pure Appl. Chem., 55 (1983) 1823.
- [3] K.B. Sharpless and M.G. Finn, J. Am. Chem. Soc., 113 (1991) 113.
- [4] F.P. Ballistreri, G.A. Tomaselli, R.M. Toscano, V. Conte and F. Di Furia, J. Mol. Catal., 89 (1994) 295.
- [5] H. Mimoun, P. Chaumette, M. Mignard, L. Saussine, J. Fischer and R. Weiss, Nouv. J. Chim., 7 (1983) 467.
- [6] E.P. Talsi, V.D. Chinakov, V.P. Babenko and K.I. Zamaraev, J. Mol. Catal., 81 (1993) 235.
- [7] E.P. Talsi, O.V. Klimov and K.I. Zamaraev, 83 (1993) 329.
- [8] R.A. Sheldon, J. Catal., 31 (1973) 427.
- [9] A. Yamamoto and S. Kambara, J. Am. Chem. Soc., 79 (1957) 4344.
- [10] N.A. Milas and D.M. Surgenor, J. Am. Chem. Soc., 68 (1946) 205.
- [11] P.D. Bartlett and J.M. McBride, J. Am. Chem. Soc., 87 (1965) 1727.
- [12] E.P. Talsi, V.D. Chinakov, V.P. Babenko, V.N. Sidelnikov and K.I. Zamaraev, J. Mol. Catal., 81 (1993) 215.